physorg.com:Spotlight stories

Double-walled nanotubes have electro-optical advantages One nanotube could be great for electronics applications, but there's new evidence that two could be tops.
Quantum copycat: Researchers find a new way in which bosons behave like fermions Bosons and fermions, the two classes into which all particles—from the sub-atomic to atoms themselves—can be sorted, behave very differently under most circumstances. While identical bosons like to congregate, identical fermions tend to be antisocial. However, in one dimension—imagine particles that can only move on a line—bosons can become as stand-offish as fermions, so that no two occupy the same position. Now, new research shows that the same thing—bosons acting like fermions—can happen with their velocities. The finding adds to our fundamental understanding of quantum systems and could inform the eventual development of quantum devices.
Scientists create triple-threat genetic toolkit for producing eco-friendly chemicals Researchers have developed a triad of innovative tools to engineer low-pH-tolerant yeast Issatchenkia orientalis for production of valuable bioproducts from renewable biomass.
Scientists find a way to extract color from black Scientists have developed a way of extracting a richer palette of colours from the available spectrum by harnessing disordered patterns inspired by nature that would typically be seen as black.
Bubbles go with the flow: Simulating behavior of fluids moving through pipes Researchers at the Institute of Industrial Science, The University of Tokyo, used a sophisticated physical model to simulate the behavior of fluids moving through pipes. By including the possibility of shear-induced bubble formation, they find that, contrary to the assumptions of many previous works, fluids can experience significant slippage when in contact with fixed boundaries. This research may help reduce energy losses when pumping fluids, which is a significant concern in many industrial applications, such as gas and oil suppliers.
Multi-stage deformation process in high-entropy alloys at ultra-low temperatures revealed An international research team led by scientists from City University of Hong Kong (CityU) has recently discovered that high-entropy alloys (HEAs) exhibit exceptional mechanical properties at ultra-low temperatures due to the coexistence of multiple deformation mechanisms. Their discovery may hold the key to designing new structural materials for applications at low temperatures.
Researchers take a big step towards a comprehensive single-cell atlas A large team of researchers affiliated with multiple institutions in and around Hangzhou, China, has taken a very large step toward the creation of a comprehensive human single-cell atlas. In their paper published in the journal Nature, the group describes how they sequenced the RNA of over a half-million single cells donated by volunteers and processed the information to present it in a way that could be used in a single-cell atlas.
Animals keep viruses in the sea in balance A variety of sea animals can take up virus particles while filtering seawater for oxygen and food. Sponges are particularly efficient. That was written by marine ecologist Jennifer Welsh from NIOZ this week, in a publication in Nature Scientific Reports. This Monday, Welsh will defend her thesis at the Free University of Amsterdam, through an online connection.
Scientists predict the size of plastics animals can eat A team of scientists at Cardiff University has, for the first time, developed a way of predicting the size of plastics different animals are likely to ingest.
Using ordinary tape, researchers make chip that could speed up drug development With ordinary double-sided tape, researchers in Sweden assembled a chip-based model of a human gut, and then fed it chili peppers to prove it works. The technique could dramatically lower cost barriers for labs that test new drugs and analyze how the body reacts to them.
ALMA resolves gas impacted by young jets from supermassive black hole Astronomers obtained the first resolved image of disturbed gaseous clouds in a galaxy 11 billion light-years away by using the Atacama Large Millimeter/submillimeter Array (ALMA). The team found that the disruption is caused by young powerful jets ejected from a supermassive black hole residing at the center of the host galaxy. This result will cast light on the mystery of the evolutionary process of galaxies in the early Universe.
Free range mitochondria are coming for you Transfer of mitochondria between cells is a ubiquitously occurring and now universally known phenomenon. For years, researchers have been serially demonstrating that one particular new cell type can transfer its mitos to yet another particular cell type to achieve some specific metabolic goal essential to survival of the meta-host organism. But what happens when the mitochondria come from the outside world, from other members of your own species, or from a different species altogether? In addressing this very real situation, we first must look at the particulars of how and why mitos are transmitted across cell boundaries in the first place.
A new 'gold standard' for safer ceramic coatings Making your own ceramics can be a way to express your creativity, but some techniques and materials used in the process could spell bad news for your health and the environment. If not prepared properly, some glazed ceramics can leach potentially harmful heavy metals. Scientists now report progress toward a new type of glaze that includes gold and silver nanoparticles, which are less toxic and more environmentally friendly than currently used formulations, while still providing vibrant colors.
3-D printed sensors could make breath tests for diabetes possible The production of highly sensitive sensors is a complex process: It requires many steps and the almost dust-free environment of special cleanrooms. A research team from Materials Science at Kiel University (CAU) and from Biomedical Engineering at the Technical University of Moldova has now developed a procedure to produce extremely sensitive and energy-efficient sensors using 3-D printing. The simple and cost-effective production method is also suitable for industrial production, the team recently explained in the renowned specialist journal Nano Energy. Their sensor, which they present here, is able to precisely measure the concentration of acetone vapor using a special structuring at the nano level. As the acetone concentration in the breath correlates with blood sugar levels, the research team hopes to have made a step towards producing a breath test for diabetics that could replace the daily checking of their blood sugar levels by finger pricks.
Optimizing efficiency of quantum circuits Quantum circuits, the building blocks of quantum computers, use quantum mechanical effects to perform tasks. They are much faster and more accurate than the classical circuits that are found in electronic devices today. In reality, however, no quantum circuit is completely error-free. Maximising the efficiency of a quantum circuit is of great interest to scientists from around the world.